
DOI: 10.1002/cmdc.200700255

Modeling and Selection of Flexible Proteins for Structure-
Based Drug Design: Backbone and Side Chain Movements
in p38 MAPK
Jyothi Subramanian, Somesh Sharma, and Chandrika B-Rao*[a]

Introduction

Computational methods play a crucial role in modern drug dis-
covery projects. Both ligand and structure-based virtual screen-
ing techniques are widely used. Virtual screening of library
compounds using docking and structure-based de novo drug
design (SBDD) are both heavily dependent on accuracy of
docking of small molecules to protein binding sites. Although
the vast majority of molecular docking programs currently in
vogue take into account the flexibility of the ligand, docking
methods that also incorporate the flexibility of the protein, are
still in their infancy and are computationally demanding.[1, 2]

Time and again, studies have shown that docking results are
extremely sensitive to the protein conformation selected.[3, 4]

However, the receptor conformational changes that accompa-
ny ligand binding, ranging all the way from a local rotation of
a few side chains to whole domain rearrangements, prove to
be a major impediment to the development of truly predictive
docking methods. Many major pharmaceutical R&D companies
are actively trying to find a solution to the problem of ligand-
induced conformational changes in proteins.

Techniques that are currently applied to deal with receptor
flexibility during docking fall into two major classes—ensemble
methods and molecular dynamics simulations (MDS). Ensemble
docking methods utilize an ensemble of predefined receptor
conformations. The binding energy of the ligand is either as-
sessed against all the receptor models in a cross-docking pro-
tocol, or, multiple receptor models are averaged and the single
averaged structure is used for the docking.[5, 6] In MDS, the re-
ceptor conformation is allowed to change dynamically during
the docking simulation. For computational tractability, the spe-

cific degrees of freedom are limited by either identifying the
optimal side-chain torsional angles during the docking proce-
dure or by using a rotamer library to represent the preferred
side-chain orientations.[7, 8] Recently, a new hybrid approach has
been reported and implemented in the Glide software where
the ligands are docked and the receptor conformations are
sampled in an iterative fashion.[9, 10] All these techniques are
computationally demanding.

We had recently reported a new technique to model ligand-
induced side-chain conformational changes in the cyclin de-
pendent kinases (CDKs).[11] In this approach, side chains contri-
buting to the conformational variability in the binding site
were identified using receptor–ligand X-ray crystal data. Linear
models were then developed to identify ligand properties that
maximally influence these side-chain conformations. A few
simple properties of the ligands were seen to account for
more than 70 % of the variation in the side-chain conforma-
tions. These models were validated and shown to be useful for
predicting the best CDK crystal structure for docking of new li-
gands. This approach can be called quantitative structure con-
formation relationship (QSCR) analysis and is similar in spirit to

Receptor rearrangement upon ligand binding (induced fit) is a
major stumbling block in docking and virtual screening. Even
though numerous studies have stressed the importance of includ-
ing protein flexibility in ligand docking, currently available meth-
ods provide only a partial solution to the problem. Most of these
methods, being computer intensive, are often impractical to use
in actual drug discovery settings. We had earlier shown that
ligand-induced receptor side-chain conformational changes could
be modeled statistically using data on known receptor–ligand
complexes. In this paper, we show that a similar approach can
be used to model more complex changes like backbone flips and
loop movements. We have used p38 MAPK as a test case and
have shown that a few simple structural features of ligands are

sufficient to predict the induced variation in receptor conforma-
tions. Rigorous validation, both by internal resampling methods
and on an external test set, corroborates this finding and demon-
strates the robustness of the models. We have also compared our
results with those from an earlier molecular dynamics simulation
study on DFG loop conformations of p38 MAPK, and found that
the results matched in the two cases. Our statistical approach en-
ables one to predict the final ligand-induced conformation of the
active site of a protein, based on a few ligand properties, prior to
docking the ligand. We can do this without having to trace the
step-by-step process by which this state is arrived at (as in molec-
ular dynamics simulations), thereby drastically reducing compu-
tational effort.
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the QSAR approach used for predicting ligand activity. The dif-
ference is that we are predicting the effect of ligand on struc-
tural conformation of key residues in the active site of the pro-
tein instead of the biological activity of the ligand.

As protein side chains typically exhibit greater mobility than
the backbone, modeling side-chain flexibility was an important
first step towards modeling receptor flexibility. However, it is
generally agreed that predicting backbone level conformation-
al changes is more complex, and in this paper, we examine
whether a similar statistical approach based on available
ligand-receptor data could also be used for modeling back-
bone level receptor conformational changes.

p38 mitogen activated protein kinase (p38 MAPK), belong-
ing to the class of serine-threonine MAP kinases, seemed to be
a good system to address this question. Small molecule inhibi-
tion of p38 MAPK has emerged as a promising therapeutic
strategy for the treatment of inflammatory diseases such as
rheumatoid arthritis as well as other diseases such as cancer,
diabetes, atherosclerosis, and Alzheimer’s disease. Recently,
new classes of p38 MAPK inhibitors have been identified and
the structural basis of the inhibition has been reviewed.[12]

Structurally, p38 MAPK is folded into the bilobal structure
typical of most protein kinases (Figure 1). The ATP binding site

is found in the deep hydrophobic cleft between the two lobes.
Previous evidence from X-ray crystallographic structures of
other kinases suggests that the adenine ring of the ATP direct-
ly interacts with the p38 hinge region residues His 107 and
Met 109 to form a pair of hydrogen bonds. ATP competitive in-
hibitors mimic the binding of ATP while also taking advantage
of additional binding regions that are not utilized by ATP.

In the process of identification of potent and selective p38
MAPK inhibitors, it was found that[13] some inhibitors induce a
peptide flip of the Gly 110 residue at the hinge region that ena-
bles an additional H-bond interaction with Gly 110. The ability
of an inhibitor to induce a Gly 110 peptide flip upon binding
results in an improved selectivity of the inhibitor for p38 over

other MAP kinases like extracellular signal-regulated protein
kinases (ERK) and c-Jun N-terminal kinase (JNK) that have
larger residues than Gly at the 110 position. Presence of larger
residues makes the required peptide flip upon binding more
energetically unfavorable.[13] The second major conformational
change induced by some p38 MAPK inhibitors is the structural
rearrangement of the kinase’s conserved Asp-Phe-Gly (DFG)
motif, shifting the phenylalanine (Phe 169) side chain from its
usual, buried location (the DFG-in conformation), to a location
~10 K away that sterically interferes with ATP binding (the
DFG-out conformation). This movement of the Phe 169 side
chain leaves a vacant hydrophobic pocket that could be filled
by the hydrophobic groups in the inhibitors. Inhibitors that
induce a DFG flip tend to show very high affinity and exhibit
slow binding kinetics relative to other p38 inhibitors.[14] Apart
from these backbone level conformational changes, binding of
some inhibitors cause a major change in the conformation of
the Tyr 35 side chain.[15] The extent of variation in ligand bound
p38 MAPK crystal structures can be seen in the figure in the
table of contents graphic.

The correlation between the physicochemical and structural
descriptors of the p38 MAPK ligands and the conformational
changes in p38 MAPK receptor induced by these ligands is the
subject of this study. Using ligand–receptor co-crystal data,
these conformational changes are statistically modeled as func-
tions of ligand descriptors. Through rigorous validation, the ro-
bustness and predictive power of the models is demonstrated.
It is proposed that these models can be used to predict the
probable conformational changes on binding to new ligands
and hence can be used to select the best p38 MAPK crystal
structure for docking of new ligands.

Materials and Methods

Protein and ligand structures

Crystal structures of the protein–ligand complexes used in this
study were obtained from the protein data bank (PDB). Twenty
five p38 MAPK crystal structures were downloaded. These in-
cluded all wild-type human p38a protein structures that were
co-crystallized with ligands. Structures with mutations were
not considered. The crystal structure resolution varied from
1.75 K to 2.80 K. The set of protein structures used in this
study is given in Table S1, Supporting Information along with
the crystal structure resolutions, the original references, and
the chemical structures of the bound ligands. The status of the
DFG loop and of Gly 110 (flip/no flip) is also mentioned in this
table.

Protein and ligand preparation.

The protein and ligand structures were prepared as per stan-
dard procedures[16] using MOE 2005-06 software.[17] When the
p38 MAPK crystal structure contained multiple chains, only
one of the chains involved in ligand binding was retained. Sol-
vent and small molecules other than the ligand were removed.
The ligand was corrected for any structural errors. Hydrogens

Figure 1. Structure of p38 MAPK bound to SB203580, a small molecule in-
hibitor (PDBID: 1A9U).[14] SB203580 is depicted as a spacefill model. The
hinge region residue Met 109 is shown.
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were added to all the atoms and the structures of the protein–
ligand complexes were energy minimized using the
CHARMM[18] force field after fixing all nonhydrogen atoms to
their crystallographic positions. The minimization was carried
out to an RMS gradient of 0.01 kcal mol�1. From each protein–
ligand complex, the ligands were then extracted and stored in
an MOE 2005-06 database for further analysis.

Conformational differences in the binding site

Without loss of generality, the twenty five p38 MAPK structures
were brought to a common frame of reference by aligning to
the 1A9U p38 MAPK structure, which was arbitrarily taken as
the standard. The alignment was done on the basis of all pro-
tein residues using MOE 2005-06 software. The binding site
variations in the different co-crystal structures were compared.
The major backbone level conformational changes in the ATP
binding site of p38 MAPK—the Gly110 flip and the flip in the
DFG loop conformation—are shown in Figure 2.

To quantify the backbone flip in the hinge region, the back-
bone y-angle of Met 109 (y109) was used. Negative values of
y109 indicate a flip in the backbone whereas positive values of
y109 indicate absence of a backbone flip. To quantify the
changes in the DFG loop conformation, two atoms that lie on
either side of this loop—the Cas of Lys 53 and Asn 114—were
chosen. These residues were chosen as reference points be-
cause their positions were found to be invariant in the set of
p38 MAPK structures. The Cas of the residues were chosen so
as to prevent confounding effects from minor (<1 K) side-
chain movements. The distances between these atoms and the
C4 carbon of Phe 169 provided a numerical measure of varia-
bility for the shift in the DFG loop conformation and the rela-
tive positioning of the Phe 169 side chain. The Phe 169 residue
was chosen because of its bulk. Shifting of this residue creates
space that could potentially be filled with ligand atoms. The
example shown in Figure 3 a illustrates the differences in the
distances for the DFG-in and the DFG-out conformations. The
average Lys 53–Phe 169 (LysPhe) distances are 15.51 K and
9.68 K for the DFG-in and DFG-out conformations respectively.

Figure 2. A more detailed view of the hinge region and the DFG backbone flips in p38 MAPK. a) PDB structure 1A9U: No flips in either DFG loop or y109.
b) PDB structure 1ZZL (black) superimposed on PDB structure 1A9U (gray): y109 flip. c) PDB structure 2BAK (black) superimposed on PDB structure 1A9U
(gray): DFG loop flip. d) PDB structure 1KV2 (black) superimposed on PDB structure 1A9U (gray): y109 and DFG loop flip.
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The average Asn 114–Phe 169 (AsnPhe) distances are 18.54 K
and 11.54 K for the DFG-in and DFG-out conformations, re-
spectively.

With regard to side chains, Tyr 35 shows significant confor-
mational variability. To quantify this variability, again two invari-
ant atoms, the Cas of His 107 and Asn 114, were chosen and
the distances between these atoms and the OH of Tyr 35 were
measured. The example shown in Figure 3 b illustrates the var-
iation in the His 107–Tyr 35 (HisTyr) and Asn 114–Tyr 35 (AsnTyr)
distances for different positions of the Tyr 35 side chain.

Descriptor calculations

To avoid any bias in descriptor selection, all 2D descriptors, as
well as all 3D descriptors that do not depend on the frame of
reference of the molecule, were calculated for all the ligands
using the descriptor calculation module of MOE 2005-06 soft-
ware. This set of 241 descriptors[19] is the same set that was
used in our earlier study[11] and includes physical property de-
scriptors, subdivided surface area descriptors, atom and bond
count descriptors, Kier and Hall connectivity descriptors, Kappa
shape indices, adjacency and distance matrix descriptors, phar-
macophore feature descriptors, partial charge descriptors, po-
tential energy descriptors, surface area, volume and shape de-
scriptors, and conformation-dependent charge descriptors. Ad-
ditionally, the 166 MACCS (Molecular ACCess System) keys[20]

representing various structural features of the molecules were
also calculated.

Model building

The correlation coefficients between the descriptors and the
dihedral y109, LysPhe, AsnPhe, HisTyr, and AsnTyr distances
were computed. For each of these variables, descriptors show-
ing less than 50 % correlation were discarded. In the resulting
set of descriptors, if two descriptors had more than 85 % corre-
lation, one of them was removed.

To find the optimum combination of descriptors that could
explain most of the variation in the inter-residue distances, re-
gression models connecting the inter-residue distances and
y109 with the ligand descriptors were fitted. In each case two
models were fitted, one with the best correlated topological
descriptors and the other with the best correlated MACCS
keys. The models were derived using stepwise selection of vari-
ables. From a full model including all descriptors selected from
the previous paragraph, at each step, descriptors with SE-
scaled coefficients having values less than 0.01 were excluded
from the model if they caused a decrease in cross-validated R2,
till there were no more variables with such coefficients.

Nonlinear regression methods were used where linear meth-
ods performed poorly.

Results

Conformational analysis of the active site

The distance variations due to conformational changes in the
active site are summarized in Figure 4. Structures with DFG-out
conformation are found to have small LysPhe and AsnPhe dis-
tances and large HisTyr and AsnTyr distances. But the struc-
tures that are in DFG-in conformation are found to have large

Figure 3. Calculation of inter-residue distances to quantify conformational changes in p38 MAPK. a) Two p38 MAPK structures - DFG-in (black) and DFG-out
(gray) showing variation in the distances due to movement of the DFG loop. b) Three p38 MAPK structures showing the variation in distances due to changes
in the Tyr 35 conformation.
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LysPhe and AsnPhe distances and variable HisTyr and AsnTyr
distances. There is no association seen between either the DFG
conformation or the Tyr 35 conformation with the hinge region
peptide (Gly 110) conformation.
Correlation between ligand structure and binding-site

conformation. Models were built using both the topological
descriptors and the MACCS keys. As models based on MACCS
keys gave better model-fit statistics overall, only the results
from MACCS keys are presented in the main paper. The results
of the model fit for topological descriptors are given in the
Supporting Information (Tables S3 and S4). MACCS keys with
more than 50 % correlation to the binding site parameters are
shown in Table 1. The optimal regression models were derived
using these descriptors by stepwise selection. It was found
that linear models were sufficient to explain the variation in
the active site distances. However, in the case of the peptide

dihedral, linear models did not give good predictions. Hence,
the hinge region peptide dihedral was coded as a binary varia-
ble, with 1 indicating a flip (y109<0) and, 0 indicating no flip
(y109>0). Descriptors were then used to discriminate between
these two possibilities using a nonlinear binary QSAR (MOE
2005.06)[21] model. The regression models are shown in Table 2.
The structural features encoded by MACCS keys occurring in
the models are summarized in Table 3.

Validation

To study the sensitivity of the models to changes in the train-
ing set data, a rigorous resampling-based cross-validation pro-
cedure was adopted.[22] Leave-many-out cross-validations were
performed by leaving out a random selection of 1/6th, 1/3rd,
and 1=2 of the data set. Regression models were built each time

from the descriptors in Table 2.
The results of these cross valida-
tions are given in Table 4 and
Table 5.

For further validation, five p38
MAPK crystal structures that
were not used in the training set
were downloaded from the PDB.
The PDB IDs of this set of protein
structures is given in Table S2 of
the Supporting Information
along with their crystal structure
resolutions, the original referen-
ces, and the status of the DFG
loop and hinge region peptide.
This table also gives the chemi-
cal structures of the bound li-
gands. As MACCS keys gave
better models than the physico-
chemical and topological de-
scriptors (compare R2 and q2 in

Table 1. MACCS fingerprints with more than 50 % correlation.

Correlation Fingerprints correlated
with AsnPhe distance

Fingerprints correlated
with LysPhe distance

Fingerprints
correlated
with AsnTyr
distance

Fingerprints cor-
related with
HisTyr distance

Fingerprints
correlated
with y109

flip

(0.6, 0.75] MACCS ACHTUNGTRENNUNG(133) MACCS ACHTUNGTRENNUNG(133)
ACHTUNGTRENNUNG(0.5, 0.6] MACCS(84) MACCS ACHTUNGTRENNUNG(151),

MACCS ACHTUNGTRENNUNG(156)
MACCS(66),
MACCS ACHTUNGTRENNUNG(110),
MACCS ACHTUNGTRENNUNG(132),
MACCS ACHTUNGTRENNUNG(151),
MACCS ACHTUNGTRENNUNG(154)

[�0.6,
�0.5)

MACCS(37), MACCS(57),
MACCS(95), MACCS ACHTUNGTRENNUNG(149),
MACCS ACHTUNGTRENNUNG(151), MACCS-
ACHTUNGTRENNUNG(160)

MACCS(57), MACCS(43),
MACCS ACHTUNGTRENNUNG(109), MACCS-
ACHTUNGTRENNUNG(131), MACCS ACHTUNGTRENNUNG(149),
MACCS ACHTUNGTRENNUNG(156), MACCS-
ACHTUNGTRENNUNG(158)

MACCS ACHTUNGTRENNUNG(144) MACCS(62)

[�0.75,
�0.6)

MACCS ACHTUNGTRENNUNG(135), MACCS(66),
MACCS(43), MACCS ACHTUNGTRENNUNG(109),
MACCS ACHTUNGTRENNUNG(110), MACCS-
ACHTUNGTRENNUNG(133), MACCS ACHTUNGTRENNUNG(156)

MACCS ACHTUNGTRENNUNG(110), MACCS-
ACHTUNGTRENNUNG(133), MACCS ACHTUNGTRENNUNG(135),
MACCS ACHTUNGTRENNUNG(117), MACCS-
ACHTUNGTRENNUNG(154), MACCS(66)

MACCS ACHTUNGTRENNUNG(154),
MACCS ACHTUNGTRENNUNG(117),
MACCS ACHTUNGTRENNUNG(110)

Figure 4. Variation in the distances corresponding to changes in the backbone and side-chain conformations. The lines for Tyr 35 related distances show
breaks because the Tyr 35 side chain position was not elucidated in the corresponding crystal structures.
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Table S4 and Table 2), validation was carried out only for the
models developed using MACCS keys. The active site distances
and y109 class were predicted for these new structures using
the models in Table 2. The predictions are given in Table 6.

Discussion

Numerous computational studies have demonstrated that the
results of docking and virtual screening are extremely sensitive
to the conformation of protein used.[2, 3, 4] However, due to the

large protein conformational space to be sampled and/or de-
pendence on biophysical theory to determine conformational
changes, currently available methods that account for protein
flexibility in the docking protocol, like ensemble docking and
MDS, are computer intensive. Ensemble methods also suffer
from the disadvantage of not providing protein conformations
specific to the query ligand. Our method presented in this
paper can be used along with MDS to reduce the computa-
tional effort and obtain more reliable results.

Table 2. Best linear model for inter-residue distances based on correlated MACCS fingerprints.[a]

Best model R2(q2) Relative importance

LysPhe = 17.25�3.29*MACCS ACHTUNGTRENNUNG(110)�1.40*MACCSACHTUNGTRENNUNG(133) 0.73 (0.68) MACCS ACHTUNGTRENNUNG(110) (1.00), MACCS ACHTUNGTRENNUNG(133) (0.87)
AsnPhe = 18.82�1.85*MACCS ACHTUNGTRENNUNG(110)�1.54*MACCS ACHTUNGTRENNUNG(109)�4.32*MACCS(66) 0.79 (0.62) MACCS(66) (1.00), MACCS ACHTUNGTRENNUNG(109) (0.99), MACCS ACHTUNGTRENNUNG(110) (0.58)
AsnTyr = 13.30 + 1.28*MACCS ACHTUNGTRENNUNG(156) + 1.66*MACCS ACHTUNGTRENNUNG(133)�1.33*MACCS ACHTUNGTRENNUNG(144) 0.69 (0.55) MACCS ACHTUNGTRENNUNG(144) (1.00), MACCS ACHTUNGTRENNUNG(156) (0.72), MACCS ACHTUNGTRENNUNG(133) (0.63)
HisTyr = 14.52 + 9.13*MACCS(66) + 3.19*MACCS ACHTUNGTRENNUNG(132) 0.78 (0.70) MACCS(66) (1.00), MACCS ACHTUNGTRENNUNG(132) (0.95)

[a] A binary discrimination model was used to classify y109 as flipped/not flipped. MACCS ACHTUNGTRENNUNG(154) and MACCS ACHTUNGTRENNUNG(117) were used to discriminate between pres-
ence and absence of a flip. The accuracy of the prediction was 92 % and the cross-validated accuracy was also 92 %.

Table 3. Structural definition of the descriptors.

Descriptor Explanation Sample structural features present in inhibitors

MACCS(66) #CX4 bonded to>= 3 carbons

MACCS ACHTUNGTRENNUNG(109) #O attached to CH2

MACCS ACHTUNGTRENNUNG(110) #O 1C from an N

MACCS ACHTUNGTRENNUNG(117) #N 2C from an O

MACCS ACHTUNGTRENNUNG(132) #O 2 bonds from CH2

MACCS ACHTUNGTRENNUNG(133) #N nonring bonded to a ring

MACCS ACHTUNGTRENNUNG(154) #O in C=O

MACCS ACHTUNGTRENNUNG(144) #atoms separated by (!:):( !:)

MACCS ACHTUNGTRENNUNG(156) #XN where coordination number of X>= 3
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Working on the assumption that similar ligands induce simi-
lar conformational changes in the receptor, we had earlier de-
veloped a novel technique based on known ligand–receptor
data and applied it to quantify ligand-induced side chain con-
formational changes in the ATP binding site of CDKs. The pre-
dicted conformational changes were validated using test data
sets and molecular simulations, which showed good agree-
ment with the predictions. This approach was also a computa-
tionally inexpensive and reliable way to identify optimal crystal
structures for docking new ligands.[11] In the present study, we
have extended our findings and demonstrated that a similar

approach can also be used to handle the more complex prob-
lem of predicting backbone-level conformational changes. This
has been illustrated using the prediction of ligand-induced
conformational changes in p38 MAPK. Our results show that all
the significant conformational changes taking place on ligand
binding to p38 MAPK—the peptide flip in the hinge region,
the flip in the DFG loop, and the movement of the Tyr 35 side
chain—can be modeled by this technique in a reliable and
computationally inexpensive manner.

Among the methods that attempt to solve the problem of
receptor flexibility, only ensemble methods that take into con-
sideration multiple protein conformations (for example, FlexE[5]

or IFREDA[23]) and to a lesser extent, MDS, can account for
backbone conformational changes. However, the problems of
choice of structures and that of combining the results from
multiple dockings are not yet optimally addressed in ensemble
methods. Moreover, for the specific case of p38 MAPK, it was
found that the hinge region peptide flip was not reproduced
by IFREDA, possibly due to the large potential barrier of this
flip.[23]

We have used distances from invariant atoms in the active
site to quantify the backbone conformational changes. The
variations in these distances are then correlated to the varia-
tions in the physicochemical and structural properties of the li-
gands. To avoid any bias in the analysis, we started with a
large set of descriptors and identified crucial descriptors that
are well correlated with the variation in the receptor conforma-

tional changes by stepwise se-
lection of descriptors. Compari-
son of the regression models
built using physicochemical de-
scriptors with the models built
using structural descriptors pro-
vide evidence that structural de-
scriptors are better correlated
with the conformational varia-
tions in p38MAPK. This is in con-
trast to what we had observed
in the case of CDKs (unpublished
data).

The structural fingerprints
MACCSACHTUNGTRENNUNG(110) and MACCS ACHTUNGTRENNUNG(133)
were identified to be the most
important for explaining the var-
iation in the LysPhe distances
and the structural fingerprints

MACCS(66), MACCS ACHTUNGTRENNUNG(109), and MACCSACHTUNGTRENNUNG(110) were identified to
be the most important for explaining the variation in the
AsnPhe distances. As these descriptors have a negative coeffi-
cient in the linear model (Table 2), we conclude that these
structural features are important in making the conformational
change from DFG-in to DFG-out in p38 MAPK. A comparison
of these structural features with the crystal structure binding
mode of the ligands reveals that when the receptor is in the
DFG-out conformation, the structural feature encoded by
MACCSACHTUNGTRENNUNG(110) is important for making H-bond interactions with
the Asp 168 residue and the structural features encoded by

Table 4. Cross-validation results for the prediction of distances related to
DFG flip and Tyr35 side-chain movement.

Model Data points left out Cross-validated R2 RMSE [K]

LysPhe

1 0.68 1.75
1/6th 0.69 1.70
1/3rd 0.66 1.77
1/2 0.66 1.79

AsnPhe

1 0.62 2.12
1/6th 0.72 1.75
1/3rd 0.71 1.76
1/2 0.71 1.78

AsnTyr

1 0.55 3.32
1/6th 0.53 3.35
1/3rd 0.57 3.21
1/2 0.33 4.03

HisTyr

1 0.70 2.39
1/6th 0.75 2.18
1/3rd 0.72 2.28
1/2 �0.54 5.40

Table 5. Cross validation results for the prediction of y109 peptide flip.

Data Points Left out Accuracy [%]
Total Flip No Flip

1 92 83 100
1/6th 92 83 92
1/3rd 88 83 92
1/2 88 92 85

Table 6. Predictions for the test set data along with RMSEs of distance predictions and accuracy of peptide flip
predictions.

PDB ID LysPhe [K] AsnPhe [K] AsnTyr [K] HisTyr [K] Peptide Flip

ACHTUNGTRENNUNG(Actual)Pred ACHTUNGTRENNUNG(Actual)Pred ACHTUNGTRENNUNG(Actual)Pred ACHTUNGTRENNUNG(Actual)Pred ACHTUNGTRENNUNG(Actual)Pred
1OUY ACHTUNGTRENNUNG(16.47)

12.55
ACHTUNGTRENNUNG(18.24)
16.97

ACHTUNGTRENNUNG(16.28)
14.97

ACHTUNGTRENNUNG(15.83)
10.36

(1)
0

1W83 ACHTUNGTRENNUNG(11.61)
11.15

ACHTUNGTRENNUNG(10.46)
12.34

ACHTUNGTRENNUNG(25.50)
21.83

ACHTUNGTRENNUNG(23.57)
19.40

(0)
0

1WBN ACHTUNGTRENNUNG(12.45)
11.15

ACHTUNGTRENNUNG(10.04)
11.11

ACHTUNGTRENNUNG(25.27)
21.67

ACHTUNGTRENNUNG(23.45)
23.65

(0)
0

1WBW ACHTUNGTRENNUNG(16.27)
15.84

ACHTUNGTRENNUNG(18.42)
17.28

ACHTUNGTRENNUNG(9.20)
15.36

ACHTUNGTRENNUNG(12.48)
13.26

(1)
1

2GFS ACHTUNGTRENNUNG(16.17)
14.44

ACHTUNGTRENNUNG(17.74)
15.74

ACHTUNGTRENNUNG(8.58)
21.70

ACHTUNGTRENNUNG(13.04)
21.38

(0)
1

RMSE = 2.02 K RMSE = 1.52 K RMSE = 6.9 K RMSE = 5.02 K Accuracy = 60 %
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MACCSACHTUNGTRENNUNG(133) and MACCS(66) are important for hydrophobic in-
teractions in the space created by the movement of the
Phe 169 residue. The structures encoded by MACCSACHTUNGTRENNUNG(109) are
seen to make interactions in the solvent exposed portions of
the receptor.

The structural fingerprints MACCSACHTUNGTRENNUNG(156), MACCSACHTUNGTRENNUNG(133), and
MACCSACHTUNGTRENNUNG(144) were found to be significant for explaining the
variation in the AspTyr distance and the structural fingerprints
MACCS(66) and MACCSACHTUNGTRENNUNG(132) were found to be significant for
explaining the variation in the HisTyr distance. We had earlier
noted the association between the DFG-out conformation and
the position of the Tyr 35 side chain. It is probably this associa-
tion that is reflected by the two common descriptors (MACCS-
ACHTUNGTRENNUNG(133), MACCS(66)) for the prediction of the DFG-loop confor-
mations and the prediction of the Tyr35 side-chain conforma-
tion.

For the prediction of the flip in the hinge region Gly 110
peptide, MACCS ACHTUNGTRENNUNG(154) and MACCSACHTUNGTRENNUNG(117) were found to be im-
portant. These descriptors pertain to the formation of an addi-
tional H-bond interaction with the backbone of Gly 110.

The models described in this report were validated using re-
sampling based cross-validation and also on an independent
test set. In the case of the models for DFG flip and hinge
region peptide flip, the results from the cross-validations
(Table 4 and Table 5) are robust with respect to changes in the
training set. However, the models for the Tyr 35 side chain
show poor validation statistics on successive removal of
chunks of data (Table 4). This phenomenon can be attributed
to the high conformational variability of this side chain—as
more and more of the data points are removed, the data set
becomes increasingly nonrepresentative. As noted before
(Figure 4), this variability in the Tyr 35 side-chain position is es-
pecially high for the p38 MAPK structures that have the DFG-in
conformation. The relatively poor predictability for Tyr 35 is
also reflected in the results of the test set data (Table 6) where
we see that the AsnTyr and HisTyr predictions show higher
RMSE as compared to LysPhe or AsnPhe predictions. We also
note from this table that for the p38 MAPK structure 2GFS,
with poor predictions for the HisTyr and AsnTyr distances, the
DFG loop is in an “in” conformation.

In a recently published molecular dynamics study of p38
MAPK, the movement of the DFG loop on ligand binding was
analyzed. It was observed in this study that apart from the
commonly found DFG-in and DFG-out conformations, other
stable intermediate conformations are also formed.[24] The au-
thors refer to these conformations as pseudo DFG-in and
pseudo DFG-out conformations. Such conformations are ac-
tually seen in the set of crystal structures (see table of contents
graphic). In our method, instead of considering just two dis-
crete cases of DFG-in and DFG-out, we consider the actual po-
sitional variation of the Phe side chain and hence we would be
able to recover the intermediate conformations also.

As with any statistical model fitting, the model developed
here is likely to be sensitive to the number and quality of pro-
tein crystal structures in the training set. Quality of training set
includes not only statistical issues but also issues involved in
the reliability of crystal structures. The quality and reliability of

the model is expected to improve with more and better quali-
ty ligand–receptor data. The advantage of our method is that
given the 3D structure data on a few ligand-bound protein
complexes, one can predict the binding site geometry for any
other ligand. Determining the mobile and invariant atoms in
the protein is the most time-consuming step in the model
building process. Once this decision is made, the subsequent
steps such as minimization of the protein–ligand complex, cal-
culation of descriptors, construction and validation of regres-
sion models do not take more than a couple of days on a
Xeon workstation. Prediction of the conformational changes
for a new ligand based on the model is almost instantaneous.

It is well known that the results of molecular dynamics simu-
lations are very much dependent on the starting conformation
of the protein–ligand complex. Our method would be useful in
determining a good protein conformation that is likely to be
induced by a new ligand. The ligand can then be docked keep-
ing this protein conformation rigid. This can be followed by
dynamics simulations to refine the poses, taking structural and
energetic considerations, and effects of solvent and ions, into
account. This computational sequence would help us first fix
the approximate crystal structure for docking, the docking
would take care of the ligand conformational changes as a
result of binding to protein and the final step of MDS would
take care of any additional factors affecting conformational
changes in the receptor. This computational scheme includes
the possibility of prediction of novel binding modes for new li-
gands. Thus, the present work, while giving an insight into the
ligand-based determinants of induced-fit, also offers a novel
and computationally efficient way of dealing with receptor-
flexibility during docking and structure-based ligand design.

Keywords: bioinformatics · drug design · p38 MAPK ·
predictive models · protein flexibility
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